مدرسة القرم
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

مدرسة القرم

Al Qarm School
 
الرئيسيةالرئيسية  أحدث الصورأحدث الصور  التسجيلالتسجيل  دخولدخول  الموقع الرئيسي  

أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"


أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"


أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"

تصويت
ما أهم الأدوات التي تفضل استخدامها في المشروع؟
 يوتيوب
 الموقع الالكتروني
 فيس بوك
 الفصول الافتراضية
 تويتر
 مجموعة " علماء المستقبل" على واتساب
استعرض النتائج
المواضيع الأكثر شعبية
مليون رد الكل يدخل ويكتب الي بخاطرة
ورقة عمل للصف الثامن
للتسجيل في بيئتي وطني
بحث عن الكسور
الهمزة المتوسطة على نبرة
معلومات عن برج خليفة
مخترع التلفاز وقصة اختراعه
بور بوينت عن حياة الشيخ زايد ونشاته
استطلاع رأي " مشروع الطالب الالكتروني "
ملزمة مراجعة الصف الثامن
أفضل 10 أعضاء في هذا المنتدى
جاسم
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
سهيل سلطان
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
عبدالله إبراهيم الهنائي
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
غانم طه جاسم المرزوقي
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
abubaker omar
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
حسن العجلوني
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
محمد فراري سليمان
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
محمد ملفي المحيربي خامس-2
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
خالد الزعابي
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
محمد احمد الحمادي 5/2
solar cell Vote_rcapsolar cell Voting_barsolar cell Vote_lcap 
احصائيات
هذا المنتدى يتوفر على 1255 عُضو.
آخر عُضو مُسجل هو drfesalmm فمرحباً به.

أعضاؤنا قدموا 21304 مساهمة في هذا المنتدى في 14790 موضوع

 

 solar cell

اذهب الى الأسفل 
كاتب الموضوعرسالة
عبدالله إبراهيم الهنائي
عالم صغير
عالم صغير
عبدالله إبراهيم الهنائي


عدد المساهمات : 1235
نقاط : 3701
تاريخ التسجيل : 08/12/2011
العمر : 29
الموقع : العين

solar cell Empty
مُساهمةموضوع: solar cell   solar cell Emptyالثلاثاء مايو 29, 2012 9:04 pm

A solar cell (also called photovoltaic cell or photoelectric cell) is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect.

Assemblies of solar cells are used to make solar modules which are used to capture energy from sunlight. When multiple modules are assembled together (such as prior to installation on a pole-mounted tracker system), the resulting integrated group of modules all oriented in one plane is referred to in the solar industry as a solar panel. The electrical energy generated from solar modules, referred to as solar power, is an example of solar energy.

Photovoltaics is the field of technology and research related to the practical application of photovoltaic cells in producing electricity from light, though it is often used specifically to refer to the generation of electricity from sunlight.

Cells are described as photovoltaic cells when the light source is not necessarily sunlight (lamplight, artificial light, etc.). These are used for detecting light or other electromagnetic radiation near the visible range, for example infrared detectors, or measurement of light intensity.





Contents
[hide] 1 History of solar cells 1.1 Bell produces the first practical cell
1.2 Berman's price reductions
1.3 Navigation market
1.4 Further improvements

2 Current events
3 Applications
4 Theory
5 Efficiency
6 Cost
7 Materials 7.1 Crystalline silicon
7.2 Thin films 7.2.1 Cadmium telluride solar cell
7.2.2 Copper indium gallium selenide
7.2.3 Gallium arsenide multijunction
7.2.4 Light-absorbing dyes (DSSC)
7.2.5 Quantum Dot Solar Cells (QDSCs)
7.2.6 Organic/polymer solar cells
7.2.7 Silicon thin films


8 Manufacture
9 Lifespan
10 Research topics
11 Manufacturers and certification 11.1 China
11.2 United States

12 See also
13 References
14 Bibliography
15 External links


[edit] History of solar cells

Main article: Timeline of solar cells

The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and "voltaic", from the name of the Italian physicist Volta, after whom a unit of electro-motive force, the volt, is named. The term "photo-voltaic" has been in use in English since 1849.[1]

The photovoltaic effect was first recognized in 1839 by French physicist A. E. Becquerel. However, it was not until 1883 that the first photovoltaic cell was built, by Charles Fritts, who coated the semiconductor selenium with an extremely thin layer of gold to form the junctions. The device was only around 1% efficient. In 1888 Russian physicist Aleksandr Stoletov built the first photoelectric cell based on the outer photoelectric effect discovered by Heinrich Hertz earlier in 1887.[2]

Albert Einstein explained the photoelectric effect in 1905 for which he received the Nobel prize in Physics in 1921.[3] Russell Ohl patented the modern junction semiconductor solar cell in 1946,[4] which was discovered while working on the series of advances that would lead to the transistor.

[edit] Bell produces the first practical cell

The modern photovoltaic cell was developed in 1954 at Bell Laboratories [5] by Daryl Chapin, Calvin Souther Fuller and Gerald Pearson. They used a diffused silicon p-n junction that reached 6% efficiency, compared to the selenium cells that found it difficult to reach 0.5%.[6] At first, cells were developed for toys and other minor uses, as the cost of the electricity they produced was very high; in relative terms, a cell that produced 1 watt of electrical power in bright sunlight cost about $250, comparing to $2 to $3 per watt for a coal plant.

Solar cells were rescued from obscurity by the suggestion to add them to the Vanguard I satellite, launched in 1958. In the original plans, the satellite would be powered only by battery, and last a short time while this ran down. By adding cells to the outside of the body, the mission time could be extended with no major changes to the spacecraft or its power systems. There was some scepticism at first, but in practice the cells proved to be a huge success, and solar cells were quickly designed into many new satellites, notably Bell's own Telstar.

Improvements were slow over the next two decades, and the only widespread use was in space applications where their power-to-weight ratio was higher than any competing technology. However, this success was also the reason for slow progress; space users were willing to pay anything for the best possible cells, there was no reason to invest in lower-cost solutions if this would reduce efficiency. Instead, the price of cells was determined largely by the semiconductor industry; their move to integrated circuits in the 1960s led to the availability of larger boules at lower relative prices. As their price fell, the price of the resulting cells did as well. However these effects were limited, and by 1971 cell costs were estimated to be $100 per watt.[7]

[edit] Berman's price reductions

In the late 1960s, Elliot Berman was investigating a new method for producing the silicon feedstock in a ribbon process. However, he found little interest in the project and was unable to gain the funding needed to develop it. In a chance encounter, he was later introduced to a team at Exxon who were looking for projects 30 years in the future. The group had concluded that electrical power would be much more expensive by 2000, and felt that this increase in price would make new alternative energy sources more attractive, and solar was the most interesting among these. In 1969, Berman joined the Linden, New Jersey Exxon lab, Solar Power Corporation (SPC).[8]

His first major effort was to canvass the potential market to see what possible uses for a new product were, and they quickly found that if the price per watt were reduced from then-current $100/watt to about $20/watt there would be significant demand. Knowing that his ribbon concept would take years to develop, the team started looking for ways to hit the $20 price point using existing materials.[8]

The first improvement was the realization that the existing cells were based on standard semiconductor manufacturing process, even though that was not ideal. This started with the boule, cutting it into disks called wafers, polishing the wafers, and then, for cell use, coating them with an anti-reflective layer. Berman noted that the rough-sawn wafers already had a perfectly suitable anti-reflective front surface, and by printing the electrodes directly on this surface, two major steps in the cell processing were eliminated. The team also explored ways to improve the mounting of the cells into arrays, eliminating the expensive materials and hand wiring used in space applications. Their solution was to use a printed circuit board on the back, acrylic plastic on the front, and silicone glue between the two, potting the cells. The largest improvement in price point was Berman's realization that existing silicon was effectively "too good" for solar cell use; the minor imperfections that would ruin a boule (or individual wafer) for electronics would have little effect in the solar application.[9] Solar cells could be made using cast-off material from the electronics market.

Putting all of these changes into practice, the company started buying up "reject" silicon from existing manufacturers at very low cost. By using the largest wafers available, thereby reducing the amount of wiring for a given panel area, and packaging them into panels using their new methods, by 1973 SPC was producing panels at $10 per watt and selling them at $20 per watt, a fivefold decrease in prices in two years.

[edit] Navigation market

SPC approached companies making navigational buoys as a natural market for their products, but found a curious situation. The primary company in the business was Automatic Power, a battery manufacturer. Realizing that solar cells might eat into their battery profits, Automatic had purchased a solar navigation aid prototype from Hoffman Electronics and shelved it.[10] Seeing there was no interest at Automatic Power, SPC turned to Tideland Signal, another battery company formed by ex-Automatic managers. Tideland introduced a solar-powered buoy and was soon ruining Automatic's business.

The timing could not be better; the rapid increase in the number of offshore oil platforms and loading facilities produced an enormous market among the oil companies. As Tideland's fortunes improved, Automatic Power started looking for their own supply of solar panels. They found Bill Yerks of Solar Power International (SPI) in California, who was looking for a market. SPI was soon bought out by one of its largest customers, the ARCO oil giant, forming ARCO Solar. ARCO Solar's factory in Camarillo, California was the first dedicated to building solar panels, and has been in continual operation from its purchase by ARCO in 1977 to 2011 when it was closed by SolarWorld.

This market, combined with the 1973 oil crisis, led to a curious situation. Oil companies were now cash-flush due to their huge profits during the crisis, but were also acutely aware that their future success would depend on some other form of power. Over the next few years, major oil companies started a number of solar firms, and were for decades the largest producers of solar panels. Exxon, ARCO, Shell, Amoco (later purchased by BP) and Mobil all had major solar divisions during the 1970s and 1980s. Technology companies also had some investment, including General Electric, Motorola, IBM, Tyco and RCA.[11]

[edit] Further improvements

In the time since Berman's work, improvements have brought production costs down under $1 a watt, with wholesale costs well under $2. "Balance of system" costs are now more than the panels themselves. Large commercial arrays can be built at below $3.40 a watt,[12][13] fully commissioned.

As the semiconductor industry moved to ever-larger boules, older equipment became available at fire-sale prices. Cells have grown in size as older equipment became available on the surplus market; ARCO Solar's original panels used cells with 2 to 4 inch (51 to 100 mm) diameter. Panels in the 1990s and early 2000s generally used 5 inch (125 mm) wafers, and since 2008 almost all new panels use 6 inch (150 mm) cells. This material has less efficiency, but is less expensive to produce in bulk. The widespread introduction of flat screen televisions in the late 1990s and early 2000s led to the wide availability of large sheets of high-quality glass, used on the front of the panels.

In terms of the cells themselves, there has been only one major change. During the 1990s, polysilicon cells became increasingly popular. These cells offer less efficiency than their monosilicon counterparts, but they are grown in large vats that greatly reduce the cost of production. By the mid-2000s, poly was dominant in the low-cost panel market, but more recently a variety of factors has pushed the higher performance mono back into widespread use.

[edit] Current events

Other technologies have tried to enter the market. First Solar was briefly the largest panel manufacturer in 2009, in terms of yearly power produced, using a thin-film cell sandwiched between two layers of glass. Since then silicon panels reasserted their dominant position both in terms of lower prices and the rapid rise of Chinese manufacturing, resulting in the top producers being Chinese. By late 2011, efficient production in China, coupled with a drop in European demand due to budgetary turmoil had dropped prices for crystalline solar-based modules further, to about $1.09[13] per watt in October 2011, down sharply from the price per watt in 2010.

A more modern process, mono-like-multi, aims to offer the performance of mono at the cost of poly, and is in the process of being introduced in 2012.

[edit] Applications





Polycrystalline photovoltaic cells laminated to backing material in a module




Polycrystalline photovoltaic cells
Main article: photovoltaic system

Solar cells are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting the semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current; however, very significant problems exist with parallel connections. For example, shadow effects can shut down the weaker (less illuminated) parallel string (a number of series connected cells) causing substantial power loss and even damaging the weaker string because of the excessive reverse bias applied to the shadowed cells by their illuminated partners. As far as possible, strings of series cells should be handled independently and not connected in parallel, save using special paralleling circuits. Although modules can be interconnected to create an array with the desired peak DC voltage and loading current capacity, using independent MPPTs (maximum power point trackers) provides a better solution. In the absence of paralleling circuits, shunt diodes can be used to reduce the power loss due to shadowing in arrays with series/parallel connected cells.

To make practical use of the solar-generated energy, the electricity is most often fed into the electricity grid using inverters (grid-connected photovoltaic systems); in stand-alone systems, batteries are used to store the energy that is not needed immediately. Solar panels can be used to power or recharge portable devices.

[edit] Theory

Main article: Theory of solar cells

The solar cell works in three steps:
1.Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.
2.Electrons (negatively charged) are knocked loose from their atoms, causing an electric potential difference. Current starts flowing through the material to cancel the potential and this electricity is captured. Due to the special composition of solar cells, the electrons are only allowed to move in a single direction.
3.An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.

[edit] Efficiency

Main article: Solar cell efficiency





Solar panels on the International Space Station absorb light from both sides. These Bifacial cells are more efficient and operate at lower temperature than single sided equivalents.
The efficiency of a solar cell may be broken down into reflectance efficiency, thermodynamic efficiency, charge carrier separation efficiency and conductive efficiency. The overall efficiency is the product of each of these individual efficiencies.

Due to the difficulty in measuring these parameters directly, other parameters are measured instead: thermodynamic efficiency, quantum efficiency, integrated quantum efficiency, VOC ratio, and fill factor. Reflectance losses are a portion of the quantum efficiency under "external quantum efficiency". Recombination losses make up a portion of the quantum efficiency, VOC ratio, and fill factor. Resistive losses are predominantly categorized under fill factor, but also make up minor portions of the quantum efficiency, VOC ratio.

The fill factor is defined as the ratio of the actual maximum obtainable power to the product of the open circuit voltage and short circuit current. This is a key parameter in evaluating the performance of solar cells. Typical commercial solar cells have a fill factor > 0.70. Grade B cells have a fill factor usually between 0.4 to 0.7.[14] Cells with a high fill factor have a low equivalent series resistance and a high equivalent shunt resistance, so less of the current produced by the cell is dissipated in internal losses.

Single p-n junction crystalline silicon devices are now approaching the theoretical limiting power efficiency of 33.7%, noted as the Shockley–Queisser limit in 1961. In the extreme, with an infinite number of layers, the corresponding limit is 86% using concentrated sunlight.[15
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
solar cell
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
»  1 Solar cell
» 1 Solar cell
» solar cell
» فيديو تعليمي مميزعن (solar cell)
» Solar Hot Water System. Home Solar heat panels. Solar Power Heaters. Hotwater Heating Collectors.

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مدرسة القرم :: العلوم العامة-
انتقل الى: