مدرسة القرم
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

مدرسة القرم

Al Qarm School
 
الرئيسيةالرئيسية  أحدث الصورأحدث الصور  التسجيلالتسجيل  دخولدخول  الموقع الرئيسي  

أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"


أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"


أهلاً ومرحباً بكم في منتدى مدرسة القرم بأبوظبي"

تصويت
ما أهم الأدوات التي تفضل استخدامها في المشروع؟
يوتيوب
wind energy Vote_rcap15%wind energy Vote_lcap
 15% [ 169 ]
الموقع الالكتروني
wind energy Vote_rcap38%wind energy Vote_lcap
 38% [ 418 ]
فيس بوك
wind energy Vote_rcap24%wind energy Vote_lcap
 24% [ 262 ]
الفصول الافتراضية
wind energy Vote_rcap9%wind energy Vote_lcap
 9% [ 98 ]
تويتر
wind energy Vote_rcap5%wind energy Vote_lcap
 5% [ 60 ]
مجموعة " علماء المستقبل" على واتساب
wind energy Vote_rcap9%wind energy Vote_lcap
 9% [ 100 ]
مجموع عدد الأصوات : 1107
المواضيع الأكثر شعبية
مليون رد الكل يدخل ويكتب الي بخاطرة
ورقة عمل للصف الثامن
للتسجيل في بيئتي وطني
بحث عن الكسور
الهمزة المتوسطة على نبرة
معلومات عن برج خليفة
مخترع التلفاز وقصة اختراعه
بور بوينت عن حياة الشيخ زايد ونشاته
استطلاع رأي " مشروع الطالب الالكتروني "
ملزمة مراجعة الصف الثامن
أفضل 10 أعضاء في هذا المنتدى
جاسم
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
سهيل سلطان
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
عبدالله إبراهيم الهنائي
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
غانم طه جاسم المرزوقي
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
abubaker omar
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
حسن العجلوني
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
محمد فراري سليمان
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
محمد ملفي المحيربي خامس-2
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
خالد الزعابي
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
محمد احمد الحمادي 5/2
wind energy Vote_rcapwind energy Voting_barwind energy Vote_lcap 
احصائيات
هذا المنتدى يتوفر على 1255 عُضو.
آخر عُضو مُسجل هو drfesalmm فمرحباً به.

أعضاؤنا قدموا 21304 مساهمة في هذا المنتدى في 14790 موضوع

 

 wind energy

اذهب الى الأسفل 
كاتب الموضوعرسالة
zayed hamad
عضو جيد
عضو جيد
zayed hamad


عدد المساهمات : 21
نقاط : 61
تاريخ التسجيل : 31/10/2011

wind energy Empty
مُساهمةموضوع: wind energy   wind energy Emptyالأربعاء ديسمبر 07, 2011 9:19 pm

From Wikipedia, the free encyclopedia









Offshore wind farm using 5MW turbines REpower 5M in the North Sea off Belgium This article discusses wind-powered electrical generators. See windmill for wind-powered machinery used to grind grain or pump water.
A wind turbine is a device that converts kinetic energy from the wind into mechanical energy. If the mechanical energy is used to produce electricity, the device may be called a wind generator or wind charger. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Developed for over a millennium, today's wind turbines are manufactured in a range of vertical and horizontal axis types. The smallest turbines are used for applications such as battery charging or auxiliary power on sailing boats; while large grid-connected arrays of turbines are becoming an increasingly large source of commercial electric power.





Contents
[hide] 1 History
2 Resources
3 Types 3.1 Horizontal axis
3.2 Vertical axis design 3.2.1 Subtypes


4 Turbine design and construction
5 Unconventional wind turbines
6 Small wind turbines
7 Wind turbine spacing
8 Accidents
9 Record-holding turbines 9.1 Largest capacity
9.2 Largest swept area
9.3 Tallest
9.4 Largest vertical-axis
9.5 Most southerly
9.6 Most productive
9.7 Highest-situated
9.8 Largest floating wind turbine
9.9 Gallery of record-holders

10 See also
11 References
12 Further reading
13 External links


[edit] History

Main article: History of wind power





James Blyth's electricity generating wind turbine photographed in 1891
Windmills were used in Persia (present-day Iran) as early as 200 B.C.[1] The windwheel of Heron of Alexandria marks one of the first known instances of wind powering a machine in history.[2][3] However, the first known practical windmills were built in Sistan, a region between Afghanistan and Iran, from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical driveshafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]

Windmills first appeared in Europe during the middle ages. The first historical records of their use in England date to the 11th or 12th centuries and there are reports of German crusaders taking their windmill-making skills to Syria around 1190.[6] By the 14th century, Dutch windmills were in use to drain areas of the Rhine delta.





The first automatically operated wind turbine, built in Cleveland in 1887 by Charles F. Brush. It was 60 feet (18 m) tall, weighed 4 tons (3.6 metric tonnes) and powered a 12kW generator.[7]
The first electricity generating wind turbine, was a battery charging machine installed in July 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland.[8] Some months later American inventor Charles F Brush built the first automatically operated wind turbine for electricity production in Cleveland, Ohio.[8] Although Blyth's turbine was considered uneconomical in the United Kingdom[8] electricity generation by wind turbines was more cost effective in countries with widely scattered populations.[6] In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 MW. The largest machines were on 24-metre (79 ft) towers with four-bladed 23-metre (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the US from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9] By the 1930s, wind generators for electricity were common on farms, mostly in the United States where distribution systems had not yet been installed. In this period, high-tensile steel was cheap, and the generators were placed atop prefabricated open steel lattice towers.

A forerunner of modern horizontal-axis wind generators was in service at Yalta, USSR in 1931. This was a 100 kW generator on a 30-metre (98 ft) tower, connected to the local 6.3 kV distribution system. It was reported to have an annual capacity factor of 32 per cent, not much different from current wind machines.[10] In the fall of 1941, the first megawatt-class wind turbine was synchronized to a utility grid in Vermont. The Smith-Putnam wind turbine only ran for 1,100 hours before suffering a critical failure. The unit was not repaired because of shortage of materials during the war.

The first utility grid-connected wind turbine to operate in the U.K. was built by John Brown & Company in 1951 in the Orkney Islands.[8][11]

[edit] Resources

Main article: Wind power

A quantitative measure of the wind energy available at any location is called the Wind Power Density (WPD) It is a calculation of the mean annual power available per square meter of swept area of a turbine, and is tabulated for different heights above ground. Calculation of wind power density includes the effect of wind velocity and air density. Color-coded maps are prepared for a particular area described, for example, as "Mean Annual Power Density at 50 Meters." In the United States, the results of the above calculation are included in an index developed by the U.S. National Renewable Energy Lab and referred to as "NREL CLASS." The larger the WPD calculation, the higher it is rated by class. Classes range from Class 1 (200 watts/square meter or less at 50 meters altitude) to Class 7 (800 to 2000 watts/square meter). Commercial wind farms generally are sited in Class 3 or higher areas, although isolated points in an otherwise Class 1 area may be practical to exploit.[12]

[edit] Types





The three primary types:VAWT Savonius, HAWT towered; VAWT Darrieus as they appear in operation.
Wind turbines can rotate about either a horizontal or a vertical axis, the former being both older and more common.[13]

[edit] Horizontal axis





Components of a horizontal axis wind turbine (gearbox, rotor shaft and brake assembly) being lifted into position
Horizontal-axis wind turbines (HAWT) have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a servo motor. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[14]

Since a tower produces turbulence behind it, the turbine is usually positioned upwind of its supporting tower. Turbine blades are made stiff to prevent the blades from being pushed into the tower by high winds. Additionally, the blades are placed a considerable distance in front of the tower and are sometimes tilted forward into the wind a small amount.

Downwind machines have been built, despite the problem of turbulence (mast wake), because they don't need an additional mechanism for keeping them in line with the wind, and because in high winds the blades can be allowed to bend which reduces their swept area and thus their wind resistance. Since cyclical (that is repetitive) turbulence may lead to fatigue failures, most HAWTs are of upwind design.







11 x 7,5 MW E126 Estinnes Windfarm, Belgium, July 2010, one month before completion, with unique 2 part blades. Modern wind turbines




Turbine blade convoy passing through Edenfield in the UK
Turbines used in wind farms for commercial production of electric power are usually three-bladed and pointed into the wind by computer-controlled motors. These have high tip speeds of over 320 kilometres per hour (200 mph), high efficiency, and low torque ripple, which contribute to good reliability. The blades are usually colored light gray to blend in with the clouds and range in length from 20 to 40 metres (66 to 130 ft) or more. The tubular steel towers range from 60 to 90 metres (200 to 300 ft) tall. The blades rotate at 10-22 revolutions per minute. At 22 rotations per minute the tip speed exceeds 90 metres per second (300 ft/s).[15][16] A gear box is commonly used for stepping up the speed of the generator, although designs may also use direct drive of an annular generator. Some models operate at constant speed, but more energy can be collected by variable-speed turbines which use a solid-state power converter to interface to the transmission system. All turbines are equipped with protective features to avoid damage at high wind speeds, by feathering the blades into the wind which ceases their rotation, supplemented by brakes.

[edit] Vertical axis design

Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. Key advantages of this arrangement are that the turbine does not need to be pointed into the wind to be effective. This is an advantage on sites where the wind direction is highly variable, for example when integrated into buildings. The key disadvantages include the low rotational speed with the consequential higher torque and hence higher cost of the drive train, the inherently lower power coefficient, the 360 degree rotation of the aerofoil within the wind flow during each cycle and hence the highly dynamic loading on the blade, the pulsating torque generated by some rotor designs on the drive train, and the difficulty of modelling the wind flow accurately and hence the challenges of analysing and designing the rotor prior to fabricating a prototype[17].

With a vertical axis, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, hence improving accessibility for maintenance.

When a turbine is mounted on a rooftop, the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of the rooftop mounted turbine tower is approximately 50% of the building height, this is near the optimum for maximum wind energy and minimum wind turbulence. It should be borne in mind that wind speeds within the built environment are generally much lower than at exposed rural sites.[18]

Another type of vertical axis is the Parallel turbine similar to the crossflow fan or centrifugal fan it uses the Ground effect. Vertical axis turbines of this type have been tried for many years[19] The Magenn WindKite blimp uses this configuration as well, chosen because of the ease of running[20].

[edit] Subtypes





Darrieus wind turbine of 30 m in the Magdalen Islands Darrieus wind turbine "Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[21] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[22] Giromill A subtype of Darrieus turbine with straight, as opposed to curved, blades. The cycloturbine variety has variable pitch to reduce the torque pulsation and is self-starting.[23] The advantages of variable pitch are: high starting torque; a wide, relatively flat torque curve; a lower blade speed ratio; a higher coefficient of performance; more efficient operation in turbulent winds; and a lower blade speed ratio which lowers blade bending stresses. Straight, V, or curved blades may be used.[24]




Twisted Savonius Savonius wind turbine These are drag-type devices with two (or more) scoops that are used in anemometers, Flettner vents (commonly seen on bus and van roofs), and in some high-reliability low-efficiency power turbines. They are always self-starting if there are at least three scoops. Twisted Savonius Twisted Savonius is a modified savonius, with long helical scoops to give a smooth torque, this is mostly used as roof windturbine or on some boats (like the Hornblower Hybrid).
[edit] Turbine design and construction





Components of a horizontal-axis wind turbine
Main article: Wind turbine design

Wind turbines are designed to exploit the wind energy that exists at a location. Aerodynamic modelling is used to determine the optimum tower height, control systems, number of blades and blade shape.

Wind turbines convert wind energy to electricity for distribution. Conventional horizontal axis turbines can be divided into three components.
The rotor component, which is approximately 20% of the wind turbine cost, includes the blades for converting wind energy to low speed rotational energy.
The generator component, which is approximately 34% of the wind turbine cost, includes the electrical generator, the control electronics, and most likely a gearbox (e.g. planetary gearbox,[25] adjustable-speed drive [26] or continuously variable transmission[27]) component for converting the low speed incoming rotation to high speed rotation suitable for generating electricity.
The structural support component, which is approximately 15% of the wind turbine cost, includes the tower and rotor yaw mechanism.[28]

A 1.5 MW wind turbine of a type frequently seen in the United States has a tower 80 meters high. The rotor assembly (blades and hub) weighs 48,000 pounds (22,000 kg). The nacelle, which contains the generator component, weighs 115,000 pounds (52,000 kg). The concrete base for the tower is constructed using 58,000 pounds (26,000 kg) of reinforcing steel and contains 250 cubic yards (190 cubic meters) of concrete. The base is 50 feet (15 m) in diameter and 8 feet (2.4 m) thick near the center.[29]

[edit] Unconventional wind turbines

Main article: Unconventional wind turbines

One E-66 wind turbine at Windpark Holtriem, Germany, carries an observation deck, open for visitors. Another turbine of the same type, with an observation deck, is located in Swaffham, England. Airborne wind turbines have been investigated many times but have yet to produce significant energy. Conceptually, wind turbines may also be used in conjunction with a large vertical solar updraft tower to extract the energy due to air heated by the sun.

Wind turbines which utilise the Magnus effect have been developed.[2]

The Ram air turbine is a specialist form of small turbine that is fitted to some aircraft. When deployed, the RAT is spun by the airstream going past the aircraft and can provide power for the most essential systems if there is a loss of all on–board electrical power.

[edit] Small wind turbines





A small wind turbine being used in Australia
Main article: Small wind turbine

Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. The US Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[30] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.

Larger, more costly turbines generally have geared power trains, alternating current output, flaps and are actively pointed into the wind. Direct drive generators and aeroelastic blades for large wind turbines are being researched.

[edit] Wind turbine spacing

On most horizontal windturbine farms, a spacing of about 6-10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economically optimal, taking into account typical wind turbine and land costs. This conclusion has been reached by research[31] conducted by Charles Meneveau of the Johns Hopkins University[32] and Johan Meyers of Leuven University in Belgium, based on computer simulations[33] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer. Moreover, recent research by John Dabiri of Caltech suggests that vertical wind turbines may be placed much more closely together so long as an alternating pattern of rotation is created allowing blades of neighboring turbines to move in the same direction as they approach one another [34].
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
wind energy
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» wind energy
» wind energy
» wind energy
» wind energy
» Wind energy

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مدرسة القرم :: العلوم العامة-
انتقل الى: